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Abstract. Using the invariant formalism of the Painlevé analysis, we get the confluent
hypergeometric equation from which we derive new special solutions of the ‘Brusselator’ reaction
model. The previously known results are particular cases of the new ones. Other types of
solutions are also obtained within the higher-order truncation of this invariant Painlevé analysis.

1. Introduction

The ‘Brusselator’ model was proposed by Prigogine and Lefever (1968). This biochemical
model aimed to describe qualitative behaviour of a reaction scheme, compatible with the
laws of thermodynamics and chemical kinetics.

Lefeveret al (1977) studied the ‘Brusselator’ model adding spatial diffusion and altering
slightly the reaction mechanism. Assuming equal diffusion coefficients for both chemical
components, the set of equations they treated is

∂u

∂t
= u2w − Bu+K ∂

2u

∂x2
(1a)

∂w

∂t
= −u2w + Bu+K ∂

2w

∂x2
(1b)

whereB is a constant parameter andK is the diffusion coefficient; the quantitiesu(x, t)
andw(x, t) describe the (positive) concentrations. Lefeveret al (1977) have analysed the
steady-state solutions under the boundary conditionu+w = constant. The latter assumption
has also been made by Vaniet al (1993) to reduce system (1) to an equation in one dynamical
variable only.

Seeking a wave solution, Vaniet al (1993) have then performed the usual Painlevé
analysis for the resulting ordinary differential equation (ODE) and have found a one-
parameter family of particular solutions.

Many investigations of system (1) have been carried out by different authors. Recently
Larsen (1993) performed the Weiss–Tabor–Carnevale (WTC) Painlevé analysis (Weisset
al 1983) and showed that system (1) possesses only the conditional Painlevé property.
Using the standard truncation procedure, he has derived one- and two-parameter families
of special solutions which can be reduced, after some algebraic manipulations to tanh-like
solutions (Ndayirinde 1996a). Note also that the reductionu + w = constant of system
(1) is the Kolmogorov–Petrovsky–Piskunov (KPP) equation for which exact solutions have
been derived by Cariello and Tabor (1991).

In this paper, we investigate system (1) within the invariant Painlevé formalism
introduced by Conte (1989) and derive new special solutions from which Larsen’s results
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(Larsen 1993) appear as particular cases. An advantage of this invariant analysis is that
the expressions for the coefficients of expansion (see equation (10) in the next section) are
greatly shortened if compared with the WTC approach (see Larsen 1993). Furthermore, the
expansion variable satisfies a Riccati system which allows the possibility of truncating the
Laurent series at positive power (Pickering 1993). Hence the class of exact solutions is
extended in comparison with the solutions originating from the standard truncated Painlevé
expansion.

The present work is organized as follows. In section 2, we use the standard truncation
procedure in the invariant formalism to derive new special solutions of (1). In section 3
we perform a higher-order truncation to look for special solutions one is not able to obtain
with the standard truncation. Finally, some concluding remarks will be given in section 4.

2. Standard truncation procedure and special solutions

Before proceeding, let us first recall the main ideas of the invariant Painlevé analysis (Conte
1989).

Given a partial differential equation (PDE), algebraic inu and its derivatives

E(u, x, t) = 0 (2)

around a movable singular manifold

φ − φ0 = 0 (3)

one looks for a solution as an expansion of the form

u = χ−α
∞∑
j=0

ujχ
j (4)

where the coefficientsuj are invariant under a group of homographic transformations onφ.
The expansion variableχ , which must vanish asφ − φ0 is chosen to be

χ = ψ

ψx
=
(

φx

φ − φ0
− φxx

2φx

)−1

ψ = (φ − φ0)φ
1
2
x . (5)

The variableχ satisfies the Riccati equations

χx = 1+ 1
2Sχ

2 (6a)

χt = −C + Csχ − 1
2(CS + Cxx)χ2 (6b)

and the variableψ satisfies the linear equations

ψxx = − 1
2Sψ (7a)

ψt = 1
2Cxψ − Cψx. (7b)

The Schwarzian derivativeS and the functionC, given by

S = {φ; x} = φxxx

φx
− 3

2

(
φxx

φx

)2

C = − φt
φx

(8)

respectively, are linked by the cross-derivative condition

St + Cxxx + 2CxS + CSx = 0. (9)

The truncation procedure in the Painlevé analysis has been shown to be very powerful
and systematic in deriving special solutions for nonlinear differential equations (see for
instance Cariello and Tabor 1989, Estévez and Gordoa 1990, Pickering 1993, Larsen 1993).



On the ‘Brusselator’ reaction model 5153

Before applying this procedure to system (1), we may take without loss of generalityK = 1
through a scaling procedure. Next, looking for solutions of type (4), i.e.

u = χ−α
∞∑
j=0

ujχ
j w = χ−β

∞∑
j=0

wjχ
j (10)

the leading-order analysis applied to (1) gives

α = β = 1 and u0 = ±
√

2≡ m w0 = −u0. (11)

The standard truncation procedure suggests then to look for special solutions of (1) in the
form

uT = mχ−1+ u1 (12a)

wT = −mχ−1+ w1. (12b)

Substituting (12) into (1), we get

j = 1 C −mw1+ 2mu1 = 0 (13)

j = 2 Cx + 2u1w1− u2
1− B + S = 0 (14)

j = 3 1
2mCS + 1

2mCxx + u1,t − u2
1w1+ Bu1+ 1

2mSx − u1,xx = 0 (15a)

− 1
2mCS − 1

2mCxx + w1,t + u2
1w1− Bu1− 1

2mSx − w1,xx = 0. (15b)

The problem is now to solve the system (13)–(15) together with the compatibility
condition (9) foru1, w1, C, χ andS.

From (13), we immediately get

w1 = C

m
+ 2u1 (16)

while from (14), using (16), we get

−mCx − 2Cu1− 3mu2
1+mB −mS = 0. (17)

Adding (15a) and (15b), we get, with the aid of (16),

3(u1,t − u1,xx)+ 1

m
(Ct − Cxx) = 0. (18)

Since a derivation of the general solution of the truncation equations (13)–(15) or (16)–(18)
together with (9), is a very hard task to do (if not impossible), such systems are usually
solved, in literature, by assuming that the invariantsS andC are constants (see for instance
Cariello and Tabor 1989, Larsen 1993, Pickering 1993). Indeed, when the invariantsS and
C are constants and given by

S = − 1
2k

2 C = c (19)

(c andk being arbitrary constants), the general solution of the Riccati system (6) is (Hille
1976)

χ−1 = k

2
tanh

(
k

2
(x − ct + δ)

)
(20)

where δ is an arbitrary constant. The truncated solutions of solitary wave type are thus
polynomials in tanh, which relates this approach directly with the tanh method (Malfliet
1992, Malfliet and Hereman 1996). Therefore, special solutions (12) are written in the form

u(x, t) ≡ uT = ±
√

2
k

2
tanh

(
k

2
(x − ct + δ)

)
+ u1 (21a)

w(x, t) ≡ wT = ∓
√

2
k

2
tanh

(
k

2
(x − ct + δ)

)
+ w1 (21b)
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whereu1, w1, k, c are determined from (16)–(19).
On the other hand, as one of us has shown recently (Ndayirinde 1996b), the relaxation

of such assumptions may lead to other types of solutions of physical interest. We thus
proceed to find these solutions and therefore solve system (13)–(15) or equivalently (16)–
(18) together with (9) in a more general way.

Guided by the fact that the functionC has the dimension of a velocity (indeedC plays
the role of the travelling wave speed in solitary wave solutions, see (19) and (20) for
instance), we assume it here as a constant but let the invariantS be free. Therefore, the
compatibility condition (9) becomes

St + CSx = 0. (22)

ExtractingS from (17), keeping in mind thatC is a constant, the relation (22) becomes

(u1,t + Cu1,x)

(
−2C

m
− 6u1

)
= 0. (23)

Two cases are now possible from (23):
(a) First,

u1 = − C

3m
. (24)

This case implies (see (17)) that bothS and C are constant, and consequently the sum
u1+w1 (see (16)). Therefore, the analysis reduces again to the customary assumption made
in the literature as stated above. We recover explicit form (21) wherek andc are related,
provided system (13)–(15) is compatible, through (17) and (19), by

S = B + C2

3m2
= B + C

2

6
. (25)

As previously stated (Vaniet al 1993, Larsen 1993), the sum of the two componentsu(x, t)

andw(x, t) is a constant. Note also that the same results have been derived with the tanh
method (Ndayirinde 1996a).

(b) Secondly,

u1,t + Cu1,x = 0. (26)

The coefficientu1 is easily determined if one takes into consideration relations (26) and
(18) as:

u1 = α + β exp(−Cx + C2t) ≡ α + βeθ (27)

whereα andβ are arbitrary constants. Using form (27), we can write the explicit form of
S from (17) as:

S = B − 2αC

m
− 3α2− β

(
2C

m
+ αB

)
eθ − 3β2e2θ . (28)

To know special solutions (12), one needs to determine the explicit form ofχ . This is done
by solving the linear ODE (7a) with S given by (28) and wheret acts as a parameter; i.e.

ψxx + 1

2

[
B − 2αC

m
− 3α2− β

(
2C

m
+ αB

)
eθ − 3β2e2θ

]
ψ = 0. (29)

Performing a change of the independent variable

z = eθ (30)
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we are able to rewrite equation (29) in the form

ψzz +
[

1

C2

(
B

2
− αC

m
− 3α2

2

)
1

z2
− β

C2

(
3α + C

m

)
1

z
− 3β2

2C2

]
ψ = 0. (31)

It may be emphasized here that equation (31) is the confluent hypergeometric equation
(Abramowitz and Stegen 1964). As a result, various confluent hypergeometric functions
may be obtained by playing with the parameters entering in (31). For instance, ifαβ 6= 0, a
closer look at the Coulomb wave equation (Abramowitz and Stegun 1964) and equation (31)
suggests that if

β2

C2
= −2

3

β

C2

(
3α + C

m

)
= 2η

1

C2

(
B

2
− αC

m
− 3α2

2

)
= L(L+ 1) (32)

with m = ±√2 (see (11)), we can write down the general solution of (31) as

ψ = AFL(η, z)+DGL(η, z) (33)

whereA andD are arbitrary constants. The functionsFL andGL are, respectively, the
regular and irregular Coulomb wavefunctions.

Taking into consideration the definition ofχ (see (5)), we write down special solutions
(12) as

u(x, t) = mAF
′
L +DG′L

AFL +DGL

+ α + βeθ (34a)

w(x, t) = −mAF
′
L +DG′L

AFL +DGL

+ C
m
+ 2α + 2βeθ (34b)

where the functionsF ′L andG′L are respectively the derivatives (with respect toz) of the
regular and irregular Coulomb wavefunctions. Note that the Coulomb wavefunctions play
an important role in quantum mechanics, precisely in describing the behaviour of a charged
particle in a Coulomb potential (Landau and Lifchitz 1967).

3. Higher-order truncation and special solutions

Due to the fact that the expansion variable in the invariant analysis satisfies a system
of Riccati equations (see the introduction), one can proceed to higher-order truncation in
series (10) to extend the class of exact solutions. In this case, withS and C constant,
simple trigonometric identities allow the identification of negative and positive powers of
χ (Pickering 1993).

Given any pair of expansion families characterized by(α, u0) and(ᾱ, ū0), (β,w0) and
(β̄, w̄0), we may seek, following Pickering’s idea (Pickering 1993), a solution of (1) as

uT = χ−α
α+ᾱ∑
j=0

ujχ
j (35a)

wT = χ−β
β+β̄∑
j=0

wjχ
j (35b)

with the last coefficients given by

uα+ᾱ = (− 1
2S)

ᾱū0 wβ+β̄ = (− 1
2S)

β̄w̄0. (36)

Note that in this higher-order truncation, one must require thatS 6= 0.
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Considering the following identities (Pickering 1993)

±(χ−1+ 1
2Sχ) = ∓ik sech(k(x − ct + F)) (37a)

±(χ−1− 1
2Sχ) = ±k tanh(k(x − ct + F)) (37b)

one may realize that the choiceu0 = ū0, w0 = w̄0 leads to the standard truncation results.
Taking into consideration the leading-order analysis (11), different choices of(u0, ū0),

and (w0, w̄0) are possible. However, the only choice leading to a solution different from
the tanh one previously obtained is(u0, ū0) = (

√
2,−√2) and (w0, w̄0) = (−√2,

√
2).

Indeed, substituting

uT =
√

2χ−1+ u1+
√

2

2
Sχ =

√
2

(
χ−1+ 1

2
Sχ

)
+ u1 (38a)

wT = −
√

2χ−1+ w1−
√

2

2
Sχ = −

√
2

(
χ−1+ 1

2
Sχ

)
+ w1 (38b)

into (1) gives

j = 1

√
2

2
C − w1+ 2u1 = 0 (39)

j = 2 2u1w1− u2
1− B − 2S = 0 (40)

j = 3 4u1S + Bu1− u2
1w1− 2Sw1 = 0 (41)

j = 4 2S2+ u2
1S − 2Su1w1+ BS = 0 (42)

j = 5 2u1− w1−
√

2

2
C = 0. (43)

Solving system (39)–(43), we get

u1 = ±
√
B

2
C = 0 w1 = ±2

√
B

2
S = B

4
. (44)

Therefore, the solutions to (38) are explicitly written down as

uT = ∓
√
B sech

(
±
√
B

2
x + δ

)
±
√
B

2
(45a)

wT = ±
√
B sech

(
±
√
B

2
x + δ

)
± 2

√
B

2
. (45b)

These static solutions could not be obtained neither by Larsen (1993) nor by Vaniet al
(1993) since they used the standard truncation procedure.

4. Concluding remarks

In comparison with the known results from the standard truncation procedure, it is easy to
realize that the relaxation of the usual assumption made on the invariantsS andC may lead
to more general results of physical interest.

Besides the importance of Coulomb wavefunctions in quantum mechanics (Landau
and Lifchitz 1967), the connection of the special functions derived from (31) with Bessel
functions, whose physical interest has been established recently (Ndayirinde 1996b) testifies
their wide application.

It is worth noticing that Vaniet al (1993) and Larsen’s (1993) results are particular cases
of those obtained here. Indeed, one can easily show, using additional formulae for circular
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functions together with the definition of hyperbolic functions, that their results are tanh-like
solutions as we have shown here for theS andC constants. We should also emphasize
here that the results derived in section 3 could not be obtained with the standard truncation
procedure.
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